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The shearing motion of monodisperse suspensions of two-dimensional deformable 
liquid drops with uniform interfacial tension is studied by means of numerical sim- 
ulations. In the theoretical model, the drops are distributed randomly within a 
square that is repeated periodically in two directions yielding a doubly periodic 
flow. Under the assumption that inertial effects are negligible and the viscosity of 
the drops is equal to that of the suspending fluid, the motion is investigated as 
a function of the area fraction of the suspended drops and of the capillary num- 
ber. The evolution of the suspension from an initial configuration with randomly 
distributed circular drops is computed using an improved implementation of the 
method of interfacial dynamics which is based on the standard boundary integral 
formulation for Stokes flow. The numerical procedure incorporates the method of 
multipole expansions to account for far-drop interactions, and interpolation through 
tables for computing the doubly periodic Green’s function; the latter allows con- 
siderable savings in the cost of the computations. Dynamic simulations are carried 
out for suspensions with up to 49 drops within each periodic cell, for an extended 
period of time up to kt  = 60, where k is the shear rate. Comparisons with previous 
numerical results for solid particles reveal that particle deformability and interfa- 
cial mobility play an important role in the character of the motion. The effects of 
particle area fraction and capillary number on the effective rheological properties 
of the suspension are discussed, and the statistics of the drop motion is analysed 
with reference to the drop-centre pair distribution function and probability density 
functions of drop aspect ratio and inclination. It is found that the effective rheo- 
logical properties may be predicted with remarkable accuracy from a knowledge of 
the instantaneous mean drop deformation and orientation alone, even at high area 
fractions. Cluster formation is not as important as in suspension of solid particles. 
The apparent random motion of the individual drops, when viewed at a sequence 
of time intervals that are large compared to the inverse shear rate, is described in 
terms of an effective non-isotropic long-time diffusivity tensor, and the transverse 
component of this tensor is computed from the results of the simulations with some 
uncertainty. 

1. Introduction 
Deformable particles, such as gas bubbles, liquid drops, organic agglomerates, 

and biological cells, are the building blocks of a broad class of industrial and 
physiological fluids. Examples include bubbly liquids, fluid mixtures encountered in 
the various chemical engineering and biotechnology industries, and blood. Describing 
the rheological and transport properties of dilute and concentrated suspensions of 
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such particles has been a problem of long-standing interest, and has been tackled on 
a number of occasions using a variety of experimental, analytical and computational 
methods (Batchelor 1974). 

Over the last two decades, significant improvements in the efficiency of com- 
putational methods for solving the equations of Stokes flow in the presence of 
a multitude of compact rigid boundaries, which in the present context may be 
identified with the surfaces of suspended particles, have allowed the extensive in- 
vestigation of the rheological and transport properties of a variety of liquid-solid 
systems, incorporating the effects of Brownian motion (Barnes, Edwards & Wood- 
cock 1987; Brady & Bossis 1988; Kim & Karrila 1991; Roc0 1993). Recent exam- 
ples include numerical simulations of the motion of monodisperse and bidisperse 
suspensions of spherical and spheroidal particles at various relative volume fractions 
(Claeys & Brady 1993; Chang & Powell 1993, 1994a,b). These numerical investi- 
gations have illustrated the physical mechanisms that govern the dynamics of the 
microstructure, established the relationship between the effective rheological prop- 
erties and the state of the microstructure, and provided a basis for describing the 
motion of the suspended entities in the context of statistical mechanics. 

Much less work has been done on the more challenging problem of suspensions 
of deformable particles, such as liquid drops with isotropic interfacial tension and 
deformable capsules enclosed by membranes with generalized mechanical proper- 
ties. Whereas the mathematical framework for quantifying the effective rheologi- 
cal properties of such suspensions has been established in an unambiguous manner 
(Batchelor 1974), and the behaviour in the limit of infinite dilution has been addressed 
successfully on a number of occasions and for a variety of interfacial constitutions 
(Pozrikidis 1995), difficulties in computing Stokes flow in the presence of a multitude 
of deforming boundaries have prevented the study of non-dilute systems with strong 
hydrodynamic interactions. Fortunately, in the limit of high volume fractions, certain 
types of motion can be described on essentially geometrical grounds using simplified 
models of foam that employ the theory of lubrication flow (Reinelt & Kraynik 1990; 
Li, Zhou & Pozrikidis 1995). It is perhaps ironic that the corresponding limit of 
maximum packing for suspensions of rigid particles is more difficult to analyse owing 
to the paramount importance of lubrication forces, as manifested by the fact that the 
rate of viscous dissipation at the points of minimum separation obtains large val- 
ues (Frankel & Acrivos 1967). Assuming that a suspension has a spatially periodic 
structure renders the computational problem tractable, at the expense, however, of 
generality and physical relevance (Pozrikidis 1993). 

At high volume fractions, the motion of a suspension of liquid deformable particles 
differs from that of solid particles in two fundamental ways. First, liquid particles with 
mobile interfaces and moderate viscosity are able to pass each other without much 
resistance. They may thus be contrasted with solid particles which tend to adhere to 
each other for a long period of time owing to the strong lubrication forces, forming 
long-lived clusters. Second, deformable particles with structured interfaces, such as 
capsules enclosed by elastic membranes, negotiate collisions by changing their shape 
as they move past their neighbours, and this results in higher effective mobilities. 
Thus, although a solitary spherical capsule enclosed by an elastic membrane rotates 
nearly as a rigid body in simple shear flow, its trajectory during collision with another 
capsule is significantly different from that of a rigid particle owing its ability to deform 
at close contact. Interfacial mobility and particle deformability work synergistically 
to make a suspension capable of accommodating externally imposed strains with a 
relatively small resistance. 
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In previous studies, we investigated the motion of suspensions of two-dimensional 
liquid drops with uniform surface tension in a channel that is confined by two parallel 
walls, by means of dynamic simulations (Zhou & Pozrikidis 1993a,b, 1994). Apprecia- 
ble computational cost, required for the computation of the pertinent Green’s function 
of Stokes flow, prevented us from studying the motion of random systems with more 
than twelve drops per periodic cell, and thus from carrying out a meaningful analysis 
of the motion using methods of statistical mechanics. Furthermore, the presence 
of walls introduced spatial inhomogeneities that render the results inapplicable to 
spatially homogeneous systems. For example, it was observed that the drops show a 
strong tendency to migrate away from the walls, and this prevents the drops that are 
located close to the centreline of the channel from travelling a significant distance 
away from their initial positions. 

In the present paper, we study the motion of unbounded, random suspensions 
of liquid drops with uniform surface tension in a doubly-periodic arrangement. 
Our primary objective is to identify the salient differences from the analogous mo- 
tion of suspensions of rigid particles studied by previous authors, concerning the 
rheological properties and the dynamics of the microstructure. The idealization 
of two-dimensional motion, motivated by computational cost alone, appears to be 
an acceptable compromise for dense systems where issues of ill-posedness of two- 
dimensional Stokes flow do not arise; experience has shown that the similarities 
between three-dimensional and two-dimensional Stokes flow outweigh their differ- 
ences. For example, the radial equilibrium pair-distribution function of hard spheres 
arranged in a plane, defined in $ 3  of this paper, is identical to that of hard disks 
(Bossis & Brady 1987), and the tensions developing around two-dimensional cap- 
sules with incompressible interfaces are similar to those developing around their 
three-dimensional counterparts (Zhou & Pozrikidis 1995). One may thus expect with 
confidence that the statistical properties of the motion of three-dimensional drops 
arranged in a plane will be similar to those of the two-dimensional drops considered 
in the present study. 

An additional assumption adopted in the present study, also motivated by consid- 
erations of computational cost, is that the viscosity of the drops is equal to that of the 
ambient fluid. As the viscosity of the drops is raised, the behaviour of the drops tends 
to resemble that of solid particles, and this suggests that the viscosity ratio is indeed 
a significant parameter of the motion. The motion for equal viscosities, however, is 
typical of that of drops whose viscosity is roughly less than four times that of the 
ambient fluid (Kennedy, Pozrikidis & Skalak 1994: Stone 1994). 

The present dynamic simulations are conducted using the method of interfacial 
dynamics, which is an advanced implementation of the boundary integral method 
for Stokes flow. The numerical procedure involves two new features that drastically 
reduce the cost of the computations and make extensive parametric investigations 
feasible: the use of interpolation tables for computing the doubly periodic Green’s 
function, and the implementation of the method of multipole expansion to account 
for remote drop interactions. 

2. Problem statement and numerical method 
Consider the motion of a doubly periodic monodisperse suspension of neutrally 

buoyant two-dimensional liquid drops with viscosity p and uniform surface tension 
y ,  suspended in an ambient fluid with identical viscosity. The arrangement of the 
drops is repeated periodically along the x- and y-axes with periods equal to L, as 
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shown in figure l(a-d). The suspension executes simple shearing motion along the 
x-axis as follows. In the absence of the drops, or when the surface tension vanishes, 
the unperturbed velocity field is given by urn = (ky,O), where k is the constant shear 
rate. The shear flow causes the drops to translate and deform thus generating a 
perturbation flow due to the surface tension. The flow rate associated with the 
perturbation velocity field along the x- or y-axis is required to vanish at all times. 

The geometry of the doubly periodic array can be described by two material vectors 
a1 and a2 that evolve under the action of the unperturbed shear flow. At the initial 
instant, al and a2 are oriented along the x- and y-axes and have identical lengths 
equal to L. Any one or both of a1 and a2 may be replaced with any of their linear 
combinations at any time. 

At the initial instant, each periodic box contains N randomly distributed non- 
overlapping circular drops of radius equal to a. The area fraction of the suspended 
phase is thus equal to 4 = Nna2/L2. The maximum area fraction for randomly 
distributed non-overlapping circular disks has been determined to be 0.82 (Kausch, 
Fesko & Tschoegl 1971); this value lies between the maximum value for circular 
disks arranged on a square lattice at close packing, which is equal to 0.785, and that 
for circular disks arranged on a hexagonal lattice at close packing, which is equal 
to 0.907. In the simulations reported in this paper, we consider the motion for two 
values 4 = 0.10 and 0.40 representing a dilute and a dense system, respectively. 

Non-dimensionalizing all variables using as length scale the equivalent drop radius 
a and time scale the inverse shear rate l/k, we find that the motion of the suspension 
depends upon the number of drops per periodic box N, the area fraction 4, the drop 
capillary number Ca = p k a / y ,  and the distribution of the drops at the initial instant. 
The results of the present simulations, as well as those of previous authors for solid 
particles, suggest that the initial drop distribution is not statistically significant when 
N is sufficiently large, roughly more than 20. An exception arises in the computation 
of the long-time self-diffusivity, which requires larger values of N. 

2.1. Boundary integral formulation 
When the Reynolds number Re based on the shear rate k and the equivalent drop 
radius a is small, Re = ka2/v41, where v is the kinematic viscosity of the fluid, the 
flow inside and outside the drops is governed by the continuity equation 

v - u  = 0 (2.1) 

- v p + p v 2 u + p g  =o,  (2.2) 
and the Stokes equation 

where p and p are the density and the viscosity of the drop or of the ambient fluid. 
Following the standard boundary integral formulation for Stokes flow, we express the 
velocity as the sum of the incident velocity u" and a single-layer potential due to the 
discontinuity in traction across the interfaces Aj,  

where SDm is the interface of the mth drop in a periodic box, A j  = yrcn is the 
discontinuity in the interfacial traction, IC is the curvature of the interface in the 
(x, y)-plane, and n is the unit vector normal to the interface pointing into the ambient 
fluid (Pozrikidis 1992, Chapter 5). Equation (2.3) is valid both inside and outside the 
drops as well as at the interfaces. The assumption that the viscosity of the drops 
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is equal to that of the ambient fluid has allowed us to obtain the velocity simply 
by computing line integrals, instead of solving a Fredholm integral equation of the 
second kind, as would be required in the general case. 

One important component of the boundary integral representation (2.3) is the 
Green's function G D P ( x , x g )  representing the doubly periodic flow due to a two- 
dimensional periodic lattice of point forces with base vectors al and a 2 ;  one of the 
point forces is situated at the point xo. The superscript D p  stands for doubly periodic. 
Details on the derivation and numerical computation of G D p  in terms of Ewald 
sums with terms that decay in a Gaussian manner are given by Pozrikidis (19964. 
We note, in particular, that the terms within the sum in real space involve the 
exponential integral which is evaluated using polynomial or rational approximations 
(Abramowitz & Stegun 1972, p. 231). 

2.2. Numerical method 
The numerical procedure is similar to that used by Li et at. (1995) in their study 
of foam flow, with the addition of the multipole expansion option and the use of 
interpolation on tables for computing the periodic Green's function. Briefly, we 
describe the interface of each drop using a set of marker points, and approximate 
its shape using cubic splines. In a simple implementation of the method, we use 
as independent interpolating variable the arclength of the polygonal line that con- 
nects successive marker points. In a more advanced implementation, we use the 
arclength of the cubic splines that are computed using the simple method. At 
each time step, we adjust the distribution of marker points by adding new points 
or removing existing points so as to (i) maintain the distance between two neigh- 
bouring marker points within preset maximum and minimum thresholds, and (ii) 
maintain the magnitude of the angles subtended by the circular arcs that connect 
three successive points below another threshold value. A typical computation begins 
with sixteen points around each interface and ends with thirty points. To advance 
the position of the marker points, we use the second-order Runge-Kutta method, 
and in some cases the third-order Runge-Kutta-Fehlberg method (RKF23). The 
latter is necessary at the high area fraction and small capillary numbers where 
numerical error may lead to artificial drop coalescence. The error due to the tem- 
poral integration was found to cause an average cumulative change of 4% in the 
area of the suspended phase during the course of a simulation from k t  = 0 up to 
k t  = 60. 

The computation of the velocity at each one of the K marker points requires 
evaluating the Green's function at least K times, and this results in a prohibitive 
computational cost. To circumvent this difficulty, we implemented two independent 
but not mutually exclusive options. 

First, to evaluate the velocity at a point that is located sufficiently far from 
a particular drop interface and its periodic repetitions, we replace the boundary 
integral over that drop with the velocity due to a point-force dipole located at the 
centre of mass of the drop. This is done by considering the disturbance velocity due 
to the mth drop in the periodic lattice, which is given by 

Assuming that the marker point xo is located sufficiently far from the mth interface 
and its doubly periodic images, we expand the Green's function within the integral 
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in (2.4) in a Taylor series with respect to the point x about the drop’s centre of mass 
xc, and obtain the multipole expansion 

uDm(xo) = --Gji  D P  (x0,xc) Af i (x )  dl(x) 
I 4np 4. 

(Pozrikidis 1992, Chapter 2). Since each interface is in dynamic equilibrium, the 
integral in the first term on the right-hand side of (2.5) vanishes. Ignoring the higher- 
order multipoles represented by the dots, we obtain an expression for the disturbance 
velocity that is identical to that due to a Green’s function dipole whose strength 
is equal to the second integral on the right-hand side of (2.5). In the numerical 
procedure, we compute the Green’s function dipole from the Green’s function using 
central differences. Furthermore, we use the definition A j  = ylcn to recast the 
coefficient of the dipole in the form y JsDm tkti dl. 

To assess the error due to the multipole expansion, we considered a model sus- 
pension consisting of two elliptical drops with aspect ratio equal to 2, oriented at 
an angle of 45” with respect to the x-axis within each periodic box, and carried out 
several series of tests. In one series, we progressively increased the equivalent drop 
radius a, while keeping the separation between their centres d constant, and recorded 
the velocity components as computed by the multipole expansion or with the full 
interfacial integral. The maximum value of the relative error of both components of 
the perturbation velocity was found to be less than 5% when d / a  was larger than 5.0; 
the corresponding average value of the relative error was found to be less than 2.5%. 
Accordingly, when the multipole expansion was enabled, it was allowed to operate 
only for drops whose separation, or that between their periodic images, was at least 
five times their equivalent radius. The zone of influence of the multipole expansion 
for a typical case is shown in figure l(a) with circles. Numerical experimentation 
showed that the shapes of the drop contours computed using this method were vi- 
sually indistinguishable from those computed in terms of all interfacial integrals; the 
computational cost, however, is reduced by a factor of at least 2 (Charles 1996). 

A drastic reduction in the cost of the computations is achieved by evaluating the 
Green’s function using trilinear interpolation from custom-made tables. To construct 
these tables we note that the two components of the vector ( x - x o ) / L  and a21/L, 
where a21 is the x-component of the base vector u2, vary in the range between zero 
and unity. We subtract off the two-dimensional Stokeslet, and tabulate the remaining 
part of the Green’s function over a unit cubic box as a function of these variables. The 
maximum absolute error due to the interpolation was determined to be of order lop5 
over the whole domain of the independent variables. The size of the three-dimensional 
tabulation array necessary to achieve this level of accuracy was 129 x 65 x 129. With 
the vectorized FORTRAN code, we obtain a reduction in CPU time by a factor of 
one thousand with respect to that required for the direct evaluation of the Green’s 
function in terms of Ewald sums. Since the savings due to the multipole expansion 
are insignificant compared to those due to the use of interpolation tables, the former 
was disabled in the majority of the simulations. 

2.3. Summary of simulations 
We carried out two main series of simulations, one at the low area fraction q5 = 0.10, 
and the second at the higher area fraction q5 = 0.40. The initial positions of the 
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centres of the drops were determined using the standard random-number generator 
installed on the CRAY C90. If the drops happened to overlap, the configuration 
was rejected and a new selection was made. The same initial configuration was 
used in computations with the same value of 4 and N but different values of Ca. 
Furthermore, the initial positions of the centres of the drops at the low area fraction 
were identical to those at the high area fraction. but the radius of the drops was 
reduced by the required proportion. 

The majority of the simulations were performed with 25 drops per periodic box, 
but a limited number of simulations were carried out with 49 drops. The rheological 
properties of the suspension and statistical properties of the microstructure exhibited 
small differences. The effective diffusivity, however, showed slow convergence as 
discussed in $ 5 .  

A simulation with 25 drops from kt  = 0 up to kt = 60.0 on the CRAY C90 computer 
of the San Diego Supercomputer Center typically required 1 to 3; hours of CPU time 
depending upon the area fraction, capillary number, and time-integration method. 
The capillary number affects the number of marker points around each drop through 
the adaptive marker point distribution method. A corresponding computation with 
49 drops required nearly 10 hours of CPU time. 

3. Drop motion and deformation 
The results of the simulations showed that the drops translate, rotate, elongate, 

and deform as they interact under the action of the simple shear flow, in a manner 
that depends strongly upon the drop capillary number and area fraction. The results 
reported in the present and in the subsequent sections correspond to capillary numbers 
that are low enough so that the drops remain intact and do not suffer excessive 
elongation or breakup at any time during the motion. The spatial distribution of the 
centres of the drops appears to be random at all times. Furthermore, all geometric 
and hydrodynamic variables appear to become stationary random functions after a 
period of time that is typically equal to k t  = 4; and this allows us to analyse the 
motion using methods of statistical mechanics. 

Four typical instantaneous configurations of the suspension at the low area fraction 
$J = 0.10, and the higher area fraction 4 = 0.40, with 49 drops per cell, at two capillary 
numbers, are shown in figure l(a-d). Computer graphics animations for the higher 
area fraction revealed the formation of transient polygonal structures with several 
participating drops. The straight lines in figure l(d) connect the centres of drops that 
appear to belong to clusters. To demonstrate the significant effect of the capillary 
number and hence of the interfacial deformability, in figure l ( e )  we have plotted 
with solid and broken lines the interfaces of drops that evolved from the same initial 
configuration but with different capillary numbers. The differences are significant. 

3.1. Relative-position pair distribution junction 
The state of the microstructure of a suspension of rigid spherical particles can be 
described by the pair distribution function g ( r ,  0). To define this quantity, we consider 
the probability that the centre of a particle is located within a small area of radial and 
angular size equal to dr and do around the point (r,fl), while the centre of a chosen 
test particle is centred at the origin. To obtain g ( r , Q ) ,  we divide this probability by 
the particle number density, that is, the average number of particles per unit area of 
the suspension. As r / a  tends to infinity, g tends to obtain the value of unity. The 
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FIGURE 1. Typical instantaneous configurations of a suspension with 49 liquid drops in each 
periodic box at (a)  4 = 0.1,Cu = 0.08,kt = 10; the circles show the zone of influence of the 
multipole expansion; (b) 4 = 0.1,Cu = 0.233,kt = 10; (c)  4 = 0.4,Cu = 0.08,kr = 10; ( d )  
4 = 0.4, Ca = 0.233, k t  = 10; the centres of drops that belong to a cluster are connected by straight 
lines. (e) Comparison between the instantaneous drop interfaces for 4 = 0.4,N = 25,kt = 40 at 
Ca = 0.08 (solid) and 0.233 (dotted), showing the effect of interfacial deformability. The suspensions 
have identical configurations at the initial instant. 

integral of g - 1 over the whole area of the suspension is a constant equal to zero at 
all times. 

The usefulness of g ( r ,  0) is two-fold. First, as explained by Batchelor (1974), knowl- 
edge of this function is a prerequisite for computing the second-order contribution 
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of the suspended-phase volume fraction to the effective rheological properties of the 
suspension. Second, in order to perform Monte Carlo statistical simulations with 
randomly distributed particles, one must know the statistics of the particle centre 
distribution which is expressed by the probability density function of the whole 
configuration space. A minimal amount of relevant information is carried by the 
pair-distribution function g ( r ,  0). Brady & Bossis (1985), Ladd (1990), and Chang & 
Powell (1993, 1994a,b) conducted dynamic and Monte Carlo simulations with sus- 
pensions of hard spheres, and found significant differences in the effective rheological 
properties when the particles are distributed in statistically different ways. As the par- 
ticle distribution becomes uniform, the effective viscosity of the suspension decreases 
owing to the absence of particle clusters. 

In figure 2 we present a typical graph of g ( r , O )  with respect to r / a  at six selected 
values of 8 for 4 = 0.40, and Ca = 0.233. In these computations, we used dr/a = 1/4 
and d8 = 1~/10. The solid lines correspond to N = 49 and the dashed lines to N = 25; 
the good qualitative agreement indicates that the latter is sufficient for describing the 
state of the microstructure. 
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For monodisperse suspensions of spherical rigid particles of radius a, the domain of 
definition of g ( r ,  0) with respect to radial distance r / a  extends between 2 and infinity; 
the lowest value corresponds to the mathematical but physically unattainable limit of 
perfect contact. For monodisperse suspensions of deformable particles with effective 
radius equal to a, g ( r , 8 )  may take finite values even when r / a  is substantially lower 
than 2, reflecting interfacial deformations at near particle contact. The minimum 
value of r / a  where g is non-zero at a given time, denoted by imin, is a function of 
the magnitude of the interfacial deformations and therefore depends on the capillary 
number. For the conditions corresponding to figure 2, the results show that Fmin can 
be as low as unity. Further simulations showed that imin decreases as the capillary 
number is raised, but it does not fall below the value of unity. Lower values require 
that the drops exhibit excessive elongation to the extent that the interfaces do not 
remain intact. 

Brady & Bossis (1988) found that the radial dependence of g ( r , 8 )  for dense 
monodisperse suspensions of rigid spherical particles of radius a, at a single value of 
8 or averaged over the range of 0, shows two sharp maxima at radial distances that 
are integral multiples of the particle diameter. This indicates cluster formation with 
two or three adjacent particles aligned in a certain direction on a straight line. Figure 2 
reveals the occurrence of a sharp peak at about r = 2a for almost all values of 0 
except near 8 = 0, followed by strong fluctuations but no apparent further peaks. The 
height of the peak reaches a blunt maximum at the angle 8 = 0 . 7 5 ~  corresponding 
to the compressive principal direction of the straining component of the incident 
shear flow. Because deformable particles at near-contact do not necessarily have the 
same centre-to-centre distance, the peak for liquid drops is broader than that for 
rigid particles. Similar results are obtained at lower values of the capillary number 
where the interfaces are significantly less deformed. Consequently, the ability of the 
drops to bypass or go over each other prevents the formation of clusters with three 
or more drops aligned in a certain direction. When the area fraction is reduced to 
Cp = 0.10, the heights of the peaks diminish, and the radial distribution of g(r ,@)  
becomes nearly flat at all angular positions but O/Z = 0.05 and 0.95 where it shows 
gradual and monotonic growth. 

In studying the motion of suspensions of solid spheres in the absence of non- 
hydrodyna-mic forces, Brady & Bossis (1985) found that the angular dependence of 
g(r ,  0), at a particular value of r or averaged over a range of r ,  is weak but significant, 
and the angular position where g ( r , 8 )  reaches maximum value depends upon the 
particle concentration. Physically, their results indicate that, at low volume fractions, 
two particles in close proximity spend more time aligned with the streamlines of 
the unperturbed flow; at high volume fractions they spend more time oriented 
perpendicular to the unperturbed flow. The behaviour at low volume fraction can be 
explained by considering the motion of two isolated particles in simple shear flow; 
at high volume fractions, the rotation of two particles around a common centre is 
hindered by the presence of other neighbouring particles. 

Bossis & Brady (1984) found that the angular dependence of g ( r , 8 )  is sensitive 
to the presence of repulsive non-hydrodynamic forces. The action of such forces 
promotes the angular variation of g ( r ,  8) so that the particle concentration is reduced 
at the downstream location of a reference sphere corresponding to 0 < 8 < ~ / 2 ,  
and raised at the upstream side corresponding to n/2 < 0 < Z. Physically, the shear 
stresses on the upstream side push two particles together while the repulsive forces 
are trying to keep them apart. On the downstream side, both forces act to separate 
the particles. 
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FIGURE 3. The angular dependence of the pair distribution function g(r ,O) ,  averaged over 
r l a  < 2.2, for: -, 4 = 0.4,Ca = 0.233,N = 25; ---, 4 = 0.4,Ca = 0.08,N = 2 5 ;  ---, 
4 = 0.1, Ca = 0.233,N = 25; ---, 4 = 0.1,Ca = 0.08,N = 25. 

In figure 3 we plot g(r ,8)  averaged over values of r / a  that are less than 2.2, for 
4 = 0.10,0.40, and Ca = 0.08,0.233. In all cases, the maximum value occurs at 
about 8 /n  = 0.75, which shows that the drops spend more time aligned with the 
compressive principal axis of the shear flow than in any other direction. The gross 
shape of the curves in figure 3 differs from that of the corresponding curve displayed 
by Brady & Bossis (1985) at small volume fractions, but is similar to that of the 
curves presented by Bossis & Brady (1984) for suspensions of spherical solid particles 
evolving in the presence of non-hydrodynamic interparticle forces. Overall, the present 
results suggest that interfacial slip and particle deformability play an important role 
in determining the relative particle distribution. 

3.2. Drop coalescence 
Pairwise and multi-drop interception is a frequent event at high volume fractions. 
In general, interception of two drops may result in either (a) transient orbiting 
motion accompanied by deformation and followed by bypassing, or (b)  collision and 
coalescence. The prevailing behaviour depends upon the initial drop separation, the 
ability of the interfaces to deform, and the duration of near-contact. 

When two spherical non-deformable drops are pushed against each other under the 
action of a constant force, the interfaces coalesce at a finite time even in the absence of 
inter-molecular forces (Davis, Schonberg & Rallison 1989). Yiantsios & Davis (1991) 
demonstrated that allowing for interfacial deformability renders the time required for 
coalescence infinite and prevents collision. More relevant to the present discussion 
is the work of Wang, Zinchenko & Davis (1994) who showed that two intercepting 
spherical drops in simple shear flow may coalesce at a finite time, and computed 
the rate of collision. Whether interfacial deformability renders the time required for 
coalescence infinite has not been determined on theoretical grounds, but numerical 
evidence suggests that it is not likely (Li et al. 1995). 

In the present simulations, drop collision and small-scale interfacial crossing were 
observed on occasion at the larger area fraction 4 = 0.40 and at the smaller capillary 
number Ca = 0.08 where the drops are nearly circular, when the computations were 
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conducted using the fixed-time-stepping second-order Runge-Kutta method. Using 
the adaptive RKF23 method and a finer resolution of the drop interfaces, however, 
prevented this occurrence. 

Li et al. (1995)  found that a simple shear flow is able to stabilize a densely packed 
ordered suspension of non-circular drops, working against the tendency of surface 
tension to render the interfaces circular and cause the drops to coalesce in the 
absence of global expansion. The results of the present simulations suggest a similar 
behaviour for random suspensions : the interfaces separate before they are given a 
sufficient amount of time to coalesce. Thus, a random emulsion with a large volume 
fraction, well beyond that corresponding to maximum random packing, resembling 
a disordered but spatially periodic foam, might be able to survive for a long period 
of time stabilized by the flow. Confirming the accuracy of this conjecture, however, 
requires numerical simulations of highly dense random systems, which at the present 
time are prevented by prohibitive computational cost. 

3.3. Drop deformation and inclination 
In the absence of interparticle hydrodynamic interactions, the drops deform in a 
similar manner independently of their initial location in the suspension, and the 
behaviour of the interfaces is determined by the drop capillary number and relative 
viscosities of the fluids. Under certain conditions the drops are known to deform 
and reach a stationary state, whereas under other conditions they exhibit continuous 
rotation with an accompanying oscillation in their aspect ratio. When the viscosity 
of the drops is equal to that of the ambient fluid, the first type of behaviour prevails. 

Weak interparticle interactions cause the drop deformation and inclination to 
fluctuate around mean values. In figure 4(a,b) we plot the probability distribution 
density functions of the drop deformation parameter D = ( A  - B ) / ( A  + B )  and 
inclination angle CI with respect to the x-axis, averaged over a long period of time, 
4 < kt < 60, and over all drops, for a suspension with a low area fraction (p = 0.10 at 
Ca= 0.08. A and B are the maximum and minimum radial distances of the interfaces 
from the instantaneous centre of the corresponding drop. Both distributions are 
narrow, with mean values located at approximately D = 0.094 and CI/Z = 0.22. The 
solid lines show the Gaussian distributions with identical mean value and standard 
deviation. 

If the drop deformation and inclination angle of each drop in a cell have the 
same probability distribution, their normalized sum over all drops at a particular 
instant will be random functions with normal probability density distribution N(0,l). 
To test this prediction, in figure 4(c) we plot the probability density function of 
[D = Cm=l(Dm - ( o ) ) / ( o ~ N ' / ~ ) ,  where D,  is the deformation for the mth drop in a 
cell at a certain time, (D) is the average value over all drops and over all times, and 
oD is the corresponding standard deviation. Similarly, - in figure 4(d) we present the 
probability density function of la = C:=:,,(a, - ( c I ) ) / ( ~ J V ~ / ~ ) .  The solid lines show 
the associated Gaussian distribution. Although the fit is not perfect, the results do 
suggest that the Gaussian distribution may be used with reasonable confidence in a 
theoretical model. 

At moderate and high area fractions, strong interparticle hydrodynamic interactions 
cause the distributions of the probability density functions of the drop deformation 
and inclination to spread out away from their mean values. Moreover, the mean 
values differ substantially from those corresponding to the infinitely dilute system. 
This behaviour is evident in figure 4(e-h), which is the counterpart of figure 4(a-d) 
for 4 = 0.40 and Ca= 0.233. We note, in particular, that as the area fraction is 

N 
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FIGURE 4. (a) The probability distribution density function of the drop deformation parame- 
ter D, averaged over all drops and over the time period 4 < k t  < 60, for a suspension with 
4 = 0.1,Ca = 0.08,N = 25.The solid line shows the Gaussian density distribution with identical 
mean value and standard deviation. (b )  Same as in (a) but for the drop inclination angle CI. (c) 
The probability density function for the normalized sum over all drops in a cell at a certain instant, 
iD = Ef=, (D,  - ( ~ ) ) / ( o ~ N * / ~ ) ,  where D, is the deformation for rn-th drop and (D) is the average 
over time and over all drops. The solid line shows the normal distribution N(0,l). ( d )  Same as in 
(c) but for the drop inclination angle a. Figures ( e )  to ( h )  are the same as (a) to (d) respectively but 
for 4 = 0.4, Ca = 0.233, N = 25. 

raised, but the drop capillary number is held constant, the mean value of the particle 
deformation increases, whereas the mean value of the inclination angle is reduced; 
this means that the drops incline towards the x-axis. The inclination angle of a drop 
may take negative values with a finite probability, revealing the occurrence of orbiting 
motions. The mean values of the drop deformation and inclination averaged over all 
drops and over time are shown in table 1 for several cases. 

The pair-distribution functions shown in figures 2 and 3,  along with the deformation 
and orientation distribution functions shown in figure 4, are necessary for carrying 
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out asymptotic analyses of the rheological properties of the suspensions at low area 
fractions, or Monte-Carlo-type simulations at high area fractions. For example, 
in developing a theoretical model, one may approximate the interfacial shapes at 
small deformations with ellipses described by their inclination and aspect ratio. A 
knowledge of the statistical distributions of the ellipses’ centres, aspect ratio, and 
inclination are sufficient for studying the motion at low area fractions. At higher 
area fractions, we also require the probability distribution density functions of the 
relatiue particle orientation in the whole configuration space. This is defined as 
the probability that a drop is located at a particular position in space and has a 
certain orientation, given the fact that another drop is located at the origin and is 
inclined at a certain angle with respect to the streamlines of the unperturbed shear 
flow. 

In $4  we shall see that a knowledge of the mean values of the drop deformation 
and orientation alone is sufficient for making accurate predictions of the effective 
instantaneous rheological properties even at high area fractions. 

4. Effective rheological properties 

stress tensor (oij) is 
When the viscosity of the drops is equal to that of the ambient fluid, the effective 

(oij) = - d i j ( P )  + 2p(ei j )  + - t i t j  dl, :s, 
where the line integral is over the interfaces of all drops in a periodic box, t is the unit 
tangential vector pointing in the counter-clockwise direction around the interfaces, 
and the brackets denote the average value over the area of one periodic cell (Li et al. 
1995). Note that the integral in (4.1), called the particle stress tensor, is the coefficient 
of the dipole discussed in 92. The instantaneous effective shear viscosity ,UEFF and 
normal stress difference NEFF are then given by 

V E F F  = $(012)/(e12), M E F F  = (011) - ( 0 2 2 ) .  ( 4 4  
Physically, the effective shear viscosity is proportional to the total rate of energy 
dissipation in the flow, whereas the first normal stress difference is a measure of the 
elastic properties of the suspension. 

A seemingly paradoxical behaviour occurs for circular drops : the off-diagonal 
integral on the right-hand side of (4.1) vanishes, and this appears to suggest that 
deformation is necessary for the particle stress tensor to have a finite value. Nearly 
circular drops, however, require small values of the capillary number. The aforemen- 
tioned integral scales with Ca and, thus, when it is multiplied by y ,  it yields a finite 
product (Pozrikidis 1993). 

The results of the simulations show that pEFF and N E ~ ~  increase in time from the 
initial values of one and zero, and then fluctuate around well-defined mean values 
denoted by and z. This behaviour is consistent with our earlier remark that 
the motion reaches a state of dynamic equilibrium and the flow variables become 
stationary random functions. As an example, in figure 5(a,b) we plot with solid lines 
the evolution of the effective viscosity and normal stress difference for a typical case 
with 4 = 0.40 and Ca = 0.233. 

Before proceeding to discuss the effect of area fraction and capillary number, we 
consider predicting the rheological properties of the suspension from a knowledge of 
the geometry of the microstructure. According to (4.1), the shape of the interfaces 
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FIGURE 5. ( a )  The evolution of the effective viscosity / L E F F  for 4 = 0.4, Ca = 0.233, N = 25 (-); 
the viscosity predicted by replacing each drop with an ellipse of identical deformation D, inclination 
a, and area (---); and that predicted by replacing all drops with the same ellipse corresponding 
to deformation (D) and inclination ( E )  (---). ( b )  Same as in (a) but for the effective normal stress 
difference A". 

alone is sufficient for computing the particle stress tensor; the instantaneous velocity 
field is not required. In the simplest possible approximation, we assume that all 
drops have identical elliptical shapes whose aspect ratio corresponds to a value of the 
deformation parameter that is equal to (D), and are inclined at the same angle (a), 
where the brackets indicate the instantaneous average over all drops. Straightforward 
analytical computation of the contour integral in (4.1) produces the dot-dashed 
lines in figure 5(a,b). The agreement between the actual results and the predictions 
of the model is remarkably good. The dashed lines in figure 5(a,b) represent the 
predictions that arise by assuming that the interfaces have elliptical shapes whose 
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- - 
M - - 

4 Ca (D) (4 /. P 
0.1 0.08 0.0945 f 0 . 6 ~ 1 0 ~ ~  0.2198 f 0 . 3 ~ 1 0 - ~  1.166 f 0 . 1 ~ 1 0 ~ ~  0.0649 0 . 7 ~ 1 0 - ~  
0.1 0.15 0.1718 f 0 . 5 ~ 1 0 - ~  0.1969 f 0 . 7 ~ 1 0 - ~  1.1574 f 0 . 3 ~ 1 0 - ~  0.109 f 0 . 2 ~ 1 0 - ~  
0.1 0.233 0.259 & 0 . 3 ~ 1 0 ~ '  0.1710 f O S X L O - ~  1.145 f 0 . 2 ~ 1 0 - ~  0.162 f 0 . 3 ~ 1 0 ~ ~  
0.4 0.08 0.1681 f 0 . 6 ~ 1 0 - ~  0.204 f 0 . 2 ~ 1 0 - ~  2.031 5 0 . 3 ~ 1 0 - ~  0.61 f 0.3~10- '  
0.4 0.15 0.272 0 . 4 ~ 1 0 - ~  0.172 f 0 . 2 ~ 1 0 ~ ~  1.84 f O.lxlO-' 0.86 f 0 . 2 ~ 1 0 ~ '  
0.4 0.233 0.371 f 0 . 5 ~ 1 0 ~ ~  0.1395 f 0 . 7 ~ 1 0 - ~  1.668 f 0 . 6 ~ 1 0 - ~  1.054 f 0 . 9 ~ 1 0 ~ ~  

TABLE 1. Mean values of geometrical and rheological variables. 

area, deformation parameter, and inclination are identical to those of the actual 
drops. The improvement in accuracy is evident but not striking. 

The mean values of (D) and (a) over a long time period 4 < kt < 60 are listed in 
table 1 for two area fractions and three values of the capillary number. The quantity 
listed in each entry of the table was obtained from three different runs with the same 
area fraction and capillary number but different initial drop distributions. 

When the drop capillary number is low enough so that the drops do not break 
up due to the flow yielding a polydisperse system, p is known to be a monotonically 
increasing function of the area fraction; our numerical results are consistent with 
this experience. For example, as the area fraction increases from 0.10 to 0.40, p 
almost doubles from 1.166 to 2.031 for Ca= 0.08. There is a critical value of the 
area fraction above which the drops are not able to accommodate the large inter- 
facial deformations required for passing one another, drop collision occurs, and the 
drops coalesce. This, however, does not imply that the effective viscosity assumes 
very large values, as it does for suspensions of rigid particles. Physically, lubrica- 
tion forces between intercepting rigid particles play a dominant role, and the rate 
of viscous dissipation tends to diverge, halting the motion of the suspended phase 
(Frankel & Acrivos 1967). The singular behaviour of the effective shear viscosity 
of suspensions of rigid spherical particles at the critical volume fraction for max- 
imum random packing has been demonstrated on a number of occasions (Brady 
& Bossis 1985), but there is no corresponding evidence for suspensions of liquid 
drops. 

In table 1 we collect the average values of the effective viscosity and normal 
stress difference at low and high area fractions, as functions of the capillary number. 
Shear-thinning and elastic behaviour are evident especially at the high area fraction; 
the latter is indicated by the finite values of the normal stress difference. There 
is a clear correlation between the effective rheological properties and the average 
drop deformation and orientation at both volume fractions, confirming that drop 
deformation and tilting are quantities of paramount rheological importance. 

4.1. Signijicance of clusters 
The effective viscosity of a dense suspension of rigid particles is determined, primarily, 
by the strong lubrication forces associated with cluster formation (Brady & Bossis 
1985). Thus, cluster size and orientation are variables of primary importance. For 
liquid drops with mobile interfaces, it is not clear whether the flow within the narrow 
gaps between adjacent interfaces makes a dominant contribution to the overall rate 
of viscous dissipation, although there is numerical evidence that drop aggregation 
causes the effective viscosity of the suspension to increase by a substantial factor 
(Zhou & Pozrikidis 1993b). 
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The computation of cluster size in suspensions of rigid spherical particles is carried 
out by comparing the particle centre-to-centre separation with a preset minimum dis- 
tance that is typically set equal to 2.02 times the particle radii (Bossis & Brady 1989; 
Chang & Powell 1994b). Owing to significant interfacial deformations, this criterion 
was found to be inadequate in the present case of deformable drops, as it fails to 
associate drops whose motion appears to be correlated when viewed in animation. 
Instead, the association of a drop with a cluster was accomplished by comparing the 
minimum distance between the interfaces of all pairs of drops. These distances were 
tested against a threshold value that was set equal to 0 . 3 0 ~  or (0.15 + ( D ) ) a ,  where a 
is the initial radius of the circular drops. Testing all drops for their positioning with 
respect to all other drops can be done a systematic way in terms of a proximity matrix 
relating single drop pairs. This matrix is interrogated recursively so that pairwise 
associations lead to cluster chains (figure Id). When all of the drops have been 
associated with a cluster chain, the mean cluster size (s), defined as the number of 
drops in a cell divided by the number of clusters, is computed. Figure l(d) shows the 
cluster pattern identified using the first criterion. 

The results of these computations were inconclusive. For example, using the first 
aforementioned criterion we find that the mean cluster size, averaged over all times, is 
a decreasing function of the capillary number. However, when the separation of the 
interfaces was tested against the empirical distance (0.1 5 +@))a, the functional depen- 
dence of the mean cluster size on the capillary number was reversed, although the cor- 
relation between the instantaneous value of the mean cluster size and effective viscosity 
became sharper. Thus, cluster formation is not a significant aspect of the motion of 
liquid drops whose viscosity is lower than or comparable to that of the ambient fluid. 

5. Long-time hydrodynamic self-diffusivity 
When the position of the centre of a spherical particle in a flowing suspension is 

sampled over a sufficiently long period of time, the particle appears to execute random 
motion that is describable in terms of an effective long-time hydrodynamic symmetric 
self-diffusivity tensor D (Eckstein, Bailey & Shapiro 1977; Leighton & Acrivos 1987; 
Acrivos et al. 1992). When both the suspension and the unperturbed flow are 
spatially homogeneous, it is reasonable to assume that D is independent of position 
in the flow, and regard it as a tensorial transport constant. The precise relationship 
between the magnitude of the self-diffusivity tensor and the effective viscosity or 
normal stress differences has not been established, apart from the observation that 
they all tend to increase as the volume fraction is raised. Similar arguments can be 
made for suspensions of deformable particles and drops in doubly periodic formation 
considered in the present study. 

In previous theoretical and computational studies of simple shear flow along the 
x-axis, the principal axes of the symmetric diffusivity tensor D have been assumed to 
be parallel to the x- and y-axes, and the random particle motion was described in 
terms of the two non-vanishing diagonal terms D,, and DjJ. A physical justification 
for this choice is elusive, although an analogy between particle motion in a suspension 
and tracer dispersion in a turbulent shear flow, where this assumption has prevailed, 
could be invoked (Monin & Yaglom 1965, p. 638). 

Allowing the principal axes of D to be inclined with respect to the direction of the 
shear flow renders D non-diagonal. A standard way of computing the components of 
D is based upon the observation that, if a large number of diffusing point particles 
are concentrated at the initial position (xo,y0) at time to, in the presence of the simple 



412 X. Li, R. Charles and C. Pozrikidis 

shear flow u, = ky + U,uy = 0 where U is a constant, then the probability of finding 
a particle at the position (x,y) at a subsequent time t is identical to the Green’s 
function of the corresponding convection-diffusion equation, which is given by 

1 
474 Dyyq)’/2 

(2 - ( ik t  + D,/D 
(5.1) exp [ 4q; 

G =  

where q = D, + (k22/12 - (D,/Dy,)2)D,,, 2 = x - xo - (ky + U);, 9 = y - yo, and 
t^ = t - to (Chandrasekhar 1943). The second moment of the particle centre deviations 
from the unperturbed path, corresponding to the variables with the caret, is found 
directly from the convection-diffusion equation to be 

2D,,? - 2kDxy? + ik2D,,?3 2D,t - kDyy2 
20,; - kD,,t2 2D,,; f P G  dx dy = s 

(Pozrikidis 1996b). Under the ergodic assumption, the left-hand side of (5.2) is 
replaced by corresponding ensemble averages or instantaneous spatial averages in- 
volving the location of the centres of all particles in a certain realization; the latter 
will be denoted by ( ). 

In analysing our results, we compute the diffusivities in terms of the products of 
the modified particle displacement X ( t )  = x(t) - x(0) - ky(t)t and Y (t) = y(t) - y(O), 
where x(t) and y(t) designate the coordinates of the centre of a drop. According to 
(5.2), the diffusivity D, may be obtained as the limit of 

as t tends to infinity. It should be noted that failure of the three ratios in (5.3) 
to reach steady values or fluctuate around mean values at large times should be 
regarded as evidence that the concept of regular hydrodynamic diffusion due to 
random motion is inappropriate, and a more general dispersion model should be used. 
The numerical simulations of Bossis & Brady (1987) and Chang & Powell (19946) 
support the validity of (5.3), and hence corroborate the description of the motion of 
solid spherical particles in terms of regular diffusion. 

In figure 6(a) we plot the three ratios defined in (5.3) for N = 25, 4 = 0.40, and 
Ca = 0.233, and obtain three curves that appear to tend to the same asymptotic 
limit at long times, which is approximately equal to 0.017ka2. Similar computations 
with a higher number of drops, N = 49, or different initial drop-centre distributions, 
showed that D,, varies between 0.007ka2 and 0.022ka2. The computed diffusivity is 
expected to converge as N-1/2, and this explains the substantial range of variation. 
Comparing our results to the corresponding result of Bossis & Brady (1987) and 
Chang & Powell (1994b) for suspensions of solid spheres, we find that the diffusivity 
of deformable particles is lower than that of solid spheres at the same volume fraction, 
by a factor as large as 5. 

Similar results were obtained for the lower area fraction. Figure 6(b) illustrates the 
behaviour of the three ratios for N = 25, 4 = 0.10, and Ca = 0.233. The three curves 
appear to fluctuate around the mean value 0.004ka2, although the amplitude of the 
fluctuation is large. 

Concentrating on the behaviour at small volume fractions, we examine the numer- 
ical results with reference to asymptotic predictions. At infinite dilution, spherical 
rigid particles or liquid drops move along straight paths, and the particle diffusivity 
vanishes. Leighton & Acrivos (1987) found that, for monodisperse suspensions of 
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spherical solid particles of radius a, D,, behaves like 0 . 5 k ~ * 4 ~ .  Acrivos et al. (1992) 
pointed out that occasional hydrodynamic interactions among three particles are 
necessary in order to prevent D,, from diverging due to pairwise interactions, and 
deduced the asymptotic form D ,  N 0.267ka24 In( 1/4). 

Reversibility of Stokes flow requires that two intercepting spherical particles in- 
teracting in isolation under the influence of a simple shear flow do not exhibit a 
net displacement after separation, and this explains the aforementioned quadratic 
dependence of D,, on 4. Deformable particles, on the other hand, do exhibit a 
net displacement whose magnitude depends upon their initial position and capillary 
number. Using standard arguments of diffusion due to random walk, we find that 
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D,, scales with ck(Ay)24 ,  where c is a dimensionless constant, and A y  is the typical 
magnitude of the net displacement. 

To estimate the magnitude of Ay,  we performed a series of simulations with two 
drops within each periodic box. At the initial instant, the drops were distributed 
evenly along the x-axis, and were displaced up or down in an alternating manner by 
the distance EU. For Ca = 0.233, we found that A y / a  varies from 0.42 and 0.59 as F 

ranges between 0.25 and 0.50. A knowledge of the range of variation of A y / a  allows 
us to estimate the magnitude of the aforementioned constant c. Taking A y / a  = 0.50, 
we find that c is approximately equal to 0.16 for both volume fractions, and this 
shows that the linear dependence of the diffusivity on the volume fraction persists at 
large volume fractions. 

Chang & Powell (1994b) computed the diffusivity of monodisperse suspensions 
of rigid spherical particles at low volume fractions. At 4 = 0.10, they found that 
D,,/(ka2) is roughly equal to 0.002, and this is substantially smaller than our value of 
0.004. It is clear that the diffusivity of deformable particles at low volume fractions is 
higher than that of solid spheres; and this is consistent with the respective linear or 
quadratic dependence on 4. 

Interfacial deformation reduces the relative displacement of two intercepting drops 
by permitting them to accommodate each other via deformation instead of lateral 
motion. One might thus argue that particle deformability reduces the value of 
the lateral hydrodynamic diffusivity. On the other hand, interfacial deformability 
is known to enhance the migration of a drop away from a boundary, resulting in 
higher displacements from the unperturbed path. This observation would appear to 
suggest that, as the capillary number is raised while all other parameters are kept 
constant, the diffusivity tends to obtain higher values, at least when the suspension 
is dense. Our numerical results show that D,, / (ka2)  = 0.021 0.003 when Ca = 0.08 
and D,,/(ka2) = 0.014$-0.008 when Ca = 0.233 at 4 = 0.40. These values clearly 
demonstrate that as Ca is raised and the interfaces tend to undergo more severe 
deformations the diffusivity is reduced. The effect of the capillary number on the 
particle diffusivity at low area fractions could not be assessed to satisfaction owing 
to numerical uncertainties. 

The computation of the longitudinal and cross-diffusivity was prevented by random 
noise due to the small size of the simulated system. As a result, the orientation of 
the principal directions of the symmetric part of the diffusivity tensor could not be 
estimated with confidence. 

6.  Discussion 
The results of the simulations showed that the motion of a random suspension of 

liquid drops whose viscosities are equal to that of the ambient fluid, in simple shear 
flow, differs from the motion of suspensions of solid spherical particles studied by 
previous authors in several fundamental ways. 

In the case of drops, interfacial mobility prevents the particles from lining up to 
form linear chains, and a percolation-like transition is not observed at a critical area 
fraction. Instead, we observe the formation of loosely defined structures with a few 
participating drops. The computation of the cluster size is sensitive to the particular 
algorithm employed to associate a drop with a cluster, as well as to the specified 
numerical thresholds. These difficulties render the formation of clusters a secondary 
mechanism in the rheology of the flow and the dynamics of the microstructure of 
suspensions of liquid drops. 
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One of the most striking findings is that a knowledge of the mean particle defor- 
mation and orientation is sufficient for estimating the rheological properties of the 
suspension with a high degree of accuracy, even at high area fractions. This infor- 
mation must be obtained from dynamic simulations and cannot be deduced from 
Monte-Carlo-type studies. 

Furthermore, the results of the dynamic simulations confirmed that the seemingly 
random motion of the centres of the drops, when viewed at sufficiently long intervals 
of time, may be described in terms of a self-diffusivity tensor. At high area fractions, 
the computed value of the lateral component of the diffusivity tensor is substantially 
lower than that for suspensions of rigid particles, and is a function of particle 
deformability. At low area fractions, the diffusivity depends linearly on the area 
fraction; this is due to the finite displacement of two deformable drops passing each 
other under the influence of a simple shear flow. As a result, the diffusivity of dilute 
suspensions of liquid drops is higher than that of rigid spheres. 

Interfacial mobility and particle deformability work synergistically to make the 
suspension adapt more easily to the shearing environment of the imposed flow. The 
present simulations address the particular case where the viscosity of the drops is 
equal to that of the ambient fluid. As the viscosity of the drop fluid is raised, the 
drops tend to behave like rigid particles, and we expect that the motion of the 
suspension will undergo significant changes. Liquid capsules, such as cells enclosed 
by elastic membranes, may be highly deformable even in the absence of interfacial 
mobility. The motion of suspensions of such particles may thus be expected to be 
intermediate between that of liquid drops and solid particles, and will be discussed in 
a forthcoming article. 
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